Thursday 5 June 2014

Airfoil

An airfoil (in American English) or aerofoil (in British English) is the shape of a wing or blade (of a propeller,rotor, or turbine) or sail as seen in cross-section.
An airfoil-shaped body moved through a fluid produces an aerodynamic force. The component of this forceperpendicular to the direction of motion is called lift. The component parallel to the direction of motion is calleddragSubsonic flight airfoils have a characteristic shape with a rounded leading edge, followed by a sharp trailing edge, often with asymmetric curvature of upper and lower surfaces. Foils of similar function designed with water as the working fluid are called hydrofoils.
The lift on an airfoil is primarily the result of its angle of attack and shape. When oriented at a suitable angle, the airfoil deflects the oncoming air, resulting in a force on the airfoil in the direction opposite to the deflection. This force is known as aerodynamic force and can be resolved into two components: lift and drag. Most foil shapes require a positive angle of attack to generate lift, but cambered airfoils can generate lift at zero angle of attack. This "turning" of the air in the vicinity of the airfoil creates curved streamlines which results in lower pressure on one side and higher pressure on the other. This pressure difference is accompanied by a velocity difference, via Bernoulli's principle, so the resulting flowfield about the airfoil has a higher average velocity on the upper surface than on the lower surface. The lift force can be related directly to the average top/bottom velocity difference without computing the pressure by using the concept of circulation and the Kutta-Joukowski theorem.[1][2][3][4]

No comments:

Post a Comment